Preliminary study of ventilation with 4 ml/kg tidal volume in acute respiratory distress syndrome: feasibility and effects on cyclic recruitment - derecruitment and hyperinflation

نویسندگان

  • Jaime Retamal
  • Javiera Libuy
  • Magdalena Jiménez
  • Matías Delgado
  • Cecilia Besa
  • Guillermo Bugedo
  • Alejandro Bruhn
چکیده

INTRODUCTION Cyclic recruitment-derecruitment and overdistension contribute to ventilator-induced lung injury. Tidal volume (Vt) may influence both, cyclic recruitment-derecruitment and overdistension. The goal of this study was to determine if decreasing Vt from 6 to 4 ml/kg reduces cyclic recruitment-derecruitment and hyperinflation, and if it is possible to avoid severe hypercapnia. METHODS Patients with pulmonary acute respiratory distress syndrome (ARDS) were included in a crossover study with two Vt levels: 6 and 4 ml/kg. The protocol had two parts: one bedside and other at the CT room. To avoid severe hypercapnia in the 4 ml/kg arm, we replaced the heat and moisture exchange filter by a heated humidifier, and respiratory rate was increased to keep minute ventilation constant. Data on lung mechanics and gas exchange were taken at baseline and after 30 minutes at each Vt (bedside). Thereafter, a dynamic CT (4 images/sec for 8 sec) was taken at each Vt at a fixed transverse region between the middle and lower third of the lungs. Afterward, CT images were analyzed and cyclic recruitment-derecruitment was determined as non-aerated tissue variation between inspiration and expiration, and hyperinflation as maximal hyperinflated tissue at end-inspiration, expressed as % of lung tissue weight. RESULTS We analyzed 10 patients. Decreasing Vt from 6 to 4 ml/kg consistently decreased cyclic recruitment-derecruitment from 3.6 (2.5 to 5.7) % to 2.9 (0.9 to 4.7) % (P <0.01) and end-inspiratory hyperinflation from 0.7 (0.3 to 2.2) to 0.6 (0.2 to 1.7) % (P = 0.01). No patient developed severe respiratory acidosis or severe hypercapnia when decreasing Vt to 4 ml/kg (pH 7.29 (7.21 to 7.46); PaCO2 48 (26 to 51) mmHg). CONCLUSIONS Decreasing Vt from 6 to 4 ml/kg reduces cyclic recruitment-derecruitment and hyperinflation. Severe respiratory acidosis may be effectively prevented by decreasing instrumental dead space and by increasing respiratory rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing positive end-expiratory pressure by oscillatory mechanics minimizes tidal recruitment and distension: an experimental study in a lavage model of lung injury

INTRODUCTION It is well established that during mechanical ventilation of patients with acute respiratory distress syndrome cyclic recruitment/derecruitment and overdistension are potentially injurious for lung tissues. We evaluated whether the forced oscillation technique (FOT) could be used to guide the ventilator settings in order to minimize cyclic lung recruitment/derecruitment and cyclic ...

متن کامل

Positive end-expiratory pressure increases strain in patients with ALI/ARDS.

OBJECTIVE The objective of this study was to assess the effects of positive end-expiratory pressure on recruitment, cyclic recruitment and derecruitment and strain in patients with acute lung injury and acute respiratory distress syndrome using lung computed tomography. METHODS This is an open, controlled, non-randomized interventional study of ten patients with acute lung injury and acute re...

متن کامل

Very Low Tidal Volume Ventilation with Associated Hypercapnia - Effects on Lung Injury in a Model for Acute Respiratory Distress Syndrome

BACKGROUND Ventilation using low tidal volumes with permission of hypercapnia is recommended to protect the lung in acute respiratory distress syndrome. However, the most lung protective tidal volume in association with hypercapnia is unknown. The aim of this study was to assess the effects of different tidal volumes with associated hypercapnia on lung injury and gas exchange in a model for acu...

متن کامل

Online Laboratory Investigations

Critical Care Medicine www.ccmjournal.org e65 Objective: Cyclic recruitment and derecruitment of atelectasis can occur during mechanical ventilation, especially in injured lungs. Experimentally, cyclic recruitment and derecruitment can be quantified by respiration-dependent changes in Pao2 (ΔPao2), reflecting the varying intrapulmonary shunt fraction within the respiratory cycle. This study inv...

متن کامل

Acute Respiratory Distress Syndrome in a Patient With Suspected Influenza: A Case Report

Acute Respiratory Distress Syndrome (ARDS) is a clinical syndrome consisting of tachypnea, refractory hypoxemia, and diffuse opacities on chest radiographs after infection or trauma which ultimately leads to respiratory failure. The principles of treatment are based on patient care in ICU, mechanical ventilation and medical treatments. By using lower plateau, less tidal volume, higher positive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2013